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Abstract 

A number of common functions have been tested to 
determine their efficiency in refining structures using 
the criteria of 'peakiness' and non-negativity of the 
electron density distribution. It is concluded that the 
best function to maximize, generally, is j p3dv, 
although, in special cases, a higher power of p may 
be better. When there is a heavy atom in the structure 
the method is much less sensitive to the particular 
function used so long as it involves powers ofp greater 
than p2. 

Introduction 

Cochran (1953) first noted that, for a correct structure, 
the integral of the cube of the electron density, ~ p3 dv, 
would be a maximum. Stanley (1979) showed that, 
using the criterion of the 'peakiness' of the correct 
electron density distribution, maximization of ~ p3 do 
could be used both for the determination of an initial 
set of signs and for the refinement of the structure. 
It was pointed out at the time that, although ~/93 do 
was the simplest function to maximize, from the 
standpoint of both peakiness and non-negativity, 
there may be other, better, functions. A thorough 
investigation of the other possible functions has been 
conducted, using data from known, and published, 
structures and also using data from an artificial struc- 
ture for various temperature coefficients and with a 
heavy atom at a variety of positions. 

Possible test functions 

There does not seem to be any analytical approach 
to the determination of the most appropriate function 
for discriminating between 'peaky' and 'non-peaky' 
distributions, although the work of Hillstrom (1970) 
seems to suggest that the identification of 'peaky' 
distributions may be of more general interest. From 
the many possible functions whose integral could 
discriminate between 'peaky' and 'non-peaky' distri- 
butions the following have been tested: p, p2, ]93, j94, 
p5, p6, p7, sinh (p) and exp (p). The last two functions 
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were soon rejected since they were indistinguishable 
from p. The odd functions, ~p2,-1 Ipl dv, were also 
tested but usually were indistinguishable from 

p2~ dv, indicating that the criterion for 'peakiness' 
was much more important than that for non-nega- 
tivity. The results are summarized in Table 1. It is 
observed that, in general, the best function to maxi- 
mize is ~/93 dv. An exception was triphenylphosphate 
(Davies & Stanley, 1962). In this structure the heavy 
atom is at a pseudo-special position, in projection. 
This made the original Fourier refinement very 
difficult. In this case it turns out that the best function 
to maximize is ~ p5 [/91 dv. 

In order to investigate further the efficiency of the 
various functions, the artificial structure of identical 
carbon-like atoms used in previous studies (Stanley, 
1968, 1979), was used, various temperature co- 
efficients were applied to the data and, in order to 
study the effect of the presence of a heavy atom, each 
atom, in turn, was replaced by a double-weight atom. 

The number of incorrect signs, in all cases, was 
determined within the ranges of Fmax : Fmin of 100 : 1 
and 10:1 using nine initially assigned signs. The 
results are summarized in Table 2. A change in the 
temperature coefficient changes the number of struc- 
ture factors within each range and also changes their 
relative order of magnitude. 

Concluding remarks 

From the results it is possible to draw several con- 
clusions: 

1. ~ p3 dv is generally the best function to maximize 
for both normalized (or unitary) structure factors and 
for observed structure factors. 

2. For special, but unpredictable, reasons it may 
be that another function is as good (or better) in a 
particular case (e.g. for triphenylphosphate ~ p5 Ipl dv 
turns out to be markedly superior). 

3. The presence of a heavy atom makes the 
refinement much less sensitive to the function maxi- 
mized provided that it is a function involving the 
integral of powers of p greater than two. 

4. Since there is very little difference between 
pZn dv and ~ p2~-1 Ipl dv it is concluded that 'peaki- 

ness' is a more sensitive criterion than non-negativity. 
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Table 1. Refinement behaviour of several known structures using various maximizing functions 

Data  
set Signs J p dv  ~ p2 dv ~ p Ipl do J p3 dv  ~ p4 dv ~ pSlpl dv 

1. Number incorrect 58 17 14 0 16 16 44 44 
*lst incorrect 7th 21st 21st 67th 67th 41st 41st 

2. Number incorrect 26 27 20 12 28 24 26 26 
*lst incorrect 25th 25th 40th 50th 41st 41st 41st 41st 

3. Number incorrect 144 140 139 99 132 131 131 132 
*lst incorrect 23rd 50th 50th 120th 40th 40th 40th 40th 

4. Number incorrect 42 32 30 18 20 30 31 31 
*lst incorrect 24th 30th 31st 43rd 40th 37th 30th 30th 

5. Number incorrect 44 34 32 24 24 34 35 35 
*lst incorrect 20th 24th 26th 44th 42nd 36th 36th 36th 

Two-dimensional data sets 

p5 dv J p' dv $ p5 Ipl dv f 0 7 dv $ exp (p) dv J sinh (p) dv 

44 44 55 58 
41st 41st 8th 7th 
26 26 26 26 
41st 41st 25th 25th 
67 81 146 144 

168th 160th 23rd 23rd 
32 32 42 42 
30th 30th 24th 24th 
35 35 44 44 
36th 36th 20th 20th 

1. Artificial structure (Stanley, 1968, 1979). 140 strongest reflections: 7 known signs. 
2. Diphenylnaphthacene (Bennett & Hanson, 1953). 77 strongest reflections: 20 known signs. 
3. Triphenylphosphate (Davies & Stanley, 1962). 300 strongest reflections: 11 known signs. 
4. Roussin's red ethyl ester (Thomas, Robertson & Cox, 1958). 81 strongest reflections; 11 known signs. 

Three dimensional data set 
5. Roussin's red ethyl ester (Thomas, Robertson & Cox, 1958). 125 strongest reflections: 14 known signs. 

* Data sets arranged in decreasing order of magnitude of Fs. 

Table 2. Refinement behaviour of an artificial structure under various conditions 

All carbon atoms 

Fmax : fmi n 
100 : 1 

Func t ion  N umbe r  incorrect  
maximized Data type total number  

~p dv E 93/214 
F(B = 1.0) 90/203 
F(B = 2.0) 81/185 

p2 dv E 60/214 
F(B = 1.0) 82/203 
F(B = 2.0) 76/185 

/:13 do E 10/214 
F(B = 1.0) 12/203 

F(B =2.0) 33/185 
S 194 dv E 46/214 

F(B = 1.0) 46/203 
F(B = 2.0) 50/185 

j p5 dv E 76/214 
F(B = 1.0) 48/201 
F(B = 2.0) 45/185 

j p6 do E 76/214 
F(B = 1.0) 48/201 
F(B = 2.0) 47/185 

S p7 dv E 74/214 
F(B = 1.0) 60/201 
F(B = 2.0) 47/185 

exp (p) dv E 90/214 
F(B = 1.0) 81/201 
F(B = 2.0) 76/185 

sinh (p) dv E 99/214 
F(B = 1.0) 79/201 
F(8 = 2"0) 76/185 

Fma x -" Fmi n 
10:1 

Number  incorrect  
total number  

51/122 
37/87 
26/66 
29/122 
27/87 
19/66 
0/122 
1/87 

11/66 
8/122 
7/87 

13/66 
40/122 

8/87 
7%6 

40¢122 
10¢87 
8187 

37t122 
14187 
8t66 

47t122 
34t87 
21t66 
541122 
33t87 
22/66 

One heavy atom 

Fma x : Fmi n 
100 : 1 

Number  incorrect  
total number  

106/223 
100t217 
92/201 
52t223 
62/217 
84/201 
28/223 
27/217 
35/201 
29/223 
27/217 
66/201 
32/223 
42/217 
24/201 
32/223 
45/217 
29/201 
32/223 
45/217 
34/201 
96/233 

100/217 
89/201 
96/223 
93/217 
93/201 

Fmax : IWmi n 
10:1 

Number  incorrect  
total number  

48/120 
32/82 
24/63 
23/120 
12/82 
19/63 
0/120 
1/82 
9/63 
1/120 
1182 

12/63 
1/120 
4/82 
1/63 
1/120 
6/82 
3/63 
1/120 
5/82 
3/63 

42/120 
30/82 
32/63 
48/120 
30/82 
21/63 

5. As expected, it makes little difference which 
atom in the artificial structure is chosen as the double- 
weight atom. Thus, the position of a heavy atom, 
provided it is not at a special or pseudo-special posi- 
tion, i:~ insignificant. 

6. "1 he lower the temperature coefficient the better 
the results. Best results are obtained using Es (or Us) 
rather than Fs, whatever the temperature coefficient. 

7. Once the initial set of signs is sufficiently large 
to define the structure (even if it cannot be recognized) 

there is no point in extending it; refinement proceeds 
identically. 

The superiority of J/9 3 dr, in most cases, is presum- 
ably because of the existence of the relationship due 
to Sayre (1953), namely, 

j p3 dv=Y. Y. F(h)F(k )F( -h -k ) ,  
h k 

coupled with the probability of finding, within a rea- 
sonably extended set of data, sufficient closed sets, 
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F(h) ,  F(k) ,  F ( - h -  k), in which the triple product 
has significant magnitude. Other similar relationships 
may exist for more than three Fs forming a dosed 
set but it is less probable that these multiple products 
are sufficiently large. However, when such relation- 
ships exist it is to be expected that some function 
other than ~/3 3 dv could be superior. 

The author is grateful to the University of New 
Brunswick for the use of the facilities of the Computer 

Centres on both the Saint John and the Fredericton 
Campuses. 
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Abstract 

The penetration depth T of an X-ray beam (A - 1 A) 
incident on a surface with an angle tz decreases 
rapidly when a goes below ac, the critical angle of 
total reflexion. It is shown experimentally that at the 
same time the Bragg peaks have a stick-like shape 
perpendicular to the sample surface. The variation of 
the depth T as a function of a has been determined 
by measuring the length of the stick. The variation 
of the Bragg intensity and the position of the peak 
as well as the depth are calculated precisely using the 
simple Fresnel formulae. 

Introduction 

L'indice de r6fraction d'un solide pour les longueurs 
d'onde X est 16g~rement inf6rieur ~ 1. Aussi, lorsqu'un 
faisceau X arrive sur une surface avec un angle 
d'incidence suffisamment faible (de l'ordre de 
quelques 1/10e degr6), il est r6fl6chi totalement. On 
a 6tablissement dans le solide d'un syst6me d'ondes 
6vanescentes, et le faisceau transmis est absorb6 forte- 
ment puisque sa p6n&ration n'est que de 20 ~ 50 A 
selon le compos6 et la longueur d'onde X (Parratt, 
1954). Si le solide est un compos6 monocristallin, 
l 'onde transmise sera diffract6e pour certaines posi- 
tions du cristal. Les r6flexions de Bragg seront done 
sensibles aux constantes du cristal dans la touche 
irradi6e, c'est-A-dire pros de la surface. Marra, 
Eisenberger & Cho (1979) ont &udi6 l'interface entre 
deux cristaux 6pitaxi6s par l'observation de certaines 
de ces r6flexions. Par l'6tude des r6flexions de Bragg 
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en incidence rasante de monocristaux de silicium et 
alumine, nous avons d&ermin6 la p6n6tration et la 
direction du faisceau transmis que nous avons corn- 
par6 aux valeurs calcul6es par les formules de Fresnel. 

Intensit6 et formes des raies de Bragg 

gappelons bri~vement le calcul de l 'onde transmise. 
L'indice de r&raction pour les rayons X (h = 1 A) se 
met sous la forme n = 1+ n'+ in" avec n' et n"<O, 
n ' = 1 0  -6 et 0< In" ]<10  -6 selon l'absorption du 
mat6dau. 

Soit une onde plane incidente sur une surface selon 
une direction faisant un angle a avec la surface. 
L'onde transmise se propage dans le solide selon une 
direction situ6e ~ 1'angle tzs de la surface. Les angles 
a e t  tzs sont reli6s par la loi de Descartes: sin (~ r /2 -  
a ) =  n sin ( ¢ r / 2 -  tz~). 

Dans le cas off n"= 0 et lorsque l'angle d'incidence 
tz < ot c = ( - - 2 n ' )  1/2, le faisceau est r6fl6chi totalement. 
Les amplitudes des ondes r6fl6chies et transmises sont 
donn6es par les formules de Fresnel. Si nous nous 
limitons au cas d'une incidence tr6s rasante (a  < 
1/100 rad) la polarisation de l 'onde incidente n'inter- 
vient pas et le vecteur champ 61ectdque de l 'onde 
transmise est, en un point de coordonn6es x et z (x 
sur une direction parall61e ~ la surface et z sur la 
direction perpendiculaire) (voir par exemple Bruhat, 
1954, ch. XVII). 

E(x, z ) =  A(a) exp i{tot 

- (2~ /A)n[x  cos as + z sin tzs]}. 
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